BigData on Google Cloud Platform

Learn the Big Data & Machine Learning capabilities of Google Cloud Platform

Next courses

None currently
2 days
20
Instructor-led, hands-on exercises
Hebrew
Bring your own (installation instructions will be sent prior to course start)
Included

This 16 hour instructor-led class introduces participants to the Big Data & Machine Learning capabilities of Google Cloud Platform. It provides a quick overview of the Google Cloud Platform and a deeper dive of the data processing capabilities.

Objectives

At the end of this course, participants will be able to:

  • Identify the purpose and value of the key Big Data and Machine Learning products in the Google Cloud Platform
  • Use CloudSQL and Cloud Dataproc to migrate existing MySQL and Hadoop/Pig/Spark/Hive workloads to Google Cloud Platform
  • Employ BigQuery and Cloud Datalab to carry out interactive data analysis
  • Choose between Cloud SQL, BigTable and Datastore
  • Train and use a neural network using TensorFlow
  • Choose between different data processing products on the Google Cloud Platform

Prerequisites

Before attending this course, participants should have roughly one (1) year of experience with one or more of the following:

  • A common query language such as SQL
  • Extract, transform, load activities
  • Data modeling
  • Machine learning and/or statistics
  • Programming in Python

Syllabus

In this module you will be introduced to Google Cloud Platform and the data handling aspects of the platform.

  • What is the Google Cloud Platform?
  • GCP Big Data Products
  • Usage scenarios
  • Lab: Sign up for Google Cloud Platform

In this module, we introduce the foundations of the Google Cloud Platform: compute and storage and introduce how they work to provide data ingest, storage, and federated analysis.

  • CPUs on demand (Compute Engine)
  • Lab: Start Google Compute Engine instance, ssh access
  • A global filesystem (Cloud Storage)
  • Lab: Set up a Ingest-Transform-Publish data processing pipeline
  • CloudShell

In this module we introduce the common Big Data use cases that Google will manage for you. These are the things that are widely done in industry today and for which we provide easy migration to the cloud.

  • Stepping stones to the cloud
  • CloudSQL: your SQL database on the cloud
  • Lab: importing data into CloudSQL and running queries on rentals data
  • Dataproc
  • Lab: Machine Learning with SparkML

This module is about the more transformational technologies in Google Cloud platform that may not have immediate parallels to technologies that attendees are using (“what’s next”).

  • Fast random access
  • Datalab
  • Demo: Sample notebook in datalab
  • BigQuery
  • Lab: Build machine learning dataset
  • Machine Learning with TensorFlow
  • Lab: Train and use neural network
  • Fully built models for common needs
  • Lab: Translate
  • Genomics API (optional)

In this module we will introduce you to data processing architectures in Google Cloud Platform.

  • Asynchronous processing with TaskQueues
  • Message-oriented architectures with Pub/Sub
  • Creating pipelines with Dataflow
  • Why GCP?
  • Where to go from here
  • Resources

Ready to get started?

We use cookies to provide an optimized user experience and understand our traffic. To learn more, read our use of cookies; otherwise, please choose 'Accept Cookies' to continue using our website.