Join Us For BigData on Google Cloud Platform
Learn the Big Data & Machine Learning capabilities of Google Cloud Platform
Leave your details below and our representatives will be in touch soon.
Please enter a name
Please enter valid email
Please enter valid phone number
Invalid captcha
We will be storing the details you submit so our representatives can reach out to you to complete the registration process, and will also use it to notify you of similar courses in the future via our newsletter.

BigData on Google Cloud Platform

Learn the Big Data & Machine Learning capabilities of Google Cloud Platform

This 16 hour instructor-led class introduces participants to the Big Data & Machine Learning capabilities of Google Cloud Platform. It provides a quick overview of the Google Cloud Platform and a deeper dive of the data processing capabilities.


At the end of this course, participants will be able to:

  • Identify the purpose and value of the key Big Data and Machine Learning products in the Google Cloud Platform
  • Use CloudSQL and Cloud Dataproc to migrate existing MySQL and Hadoop/Pig/Spark/Hive workloads to Google Cloud Platform
  • Employ BigQuery and Cloud Datalab to carry out interactive data analysis
  • Choose between Cloud SQL, BigTable and Datastore
  • Train and use a neural network using TensorFlow
  • Choose between different data processing products on the Google Cloud Platform

Before attending this course, participants should have roughly one (1) year of experience with one or more of the following:

  • A common query language such as SQL
  • Extract, transform, load activities
  • Data modeling
  • Machine learning and/or statistics
  • Programming in Python


In this module you will be introduced to Google Cloud Platform and the data handling aspects of the platform.

  • What is the Google Cloud Platform?
  • GCP Big Data Products
  • Usage scenarios
  • Lab: Sign up for Google Cloud Platform

In this module, we introduce the foundations of the Google Cloud Platform: compute and storage and introduce how they work to provide data ingest, storage, and federated analysis.

  • CPUs on demand (Compute Engine)
  • Lab: Start Google Compute Engine instance, ssh access
  • A global filesystem (Cloud Storage)
  • Lab: Set up a Ingest-Transform-Publish data processing pipeline
  • CloudShell

In this module we introduce the common Big Data use cases that Google will manage for you. These are the things that are widely done in industry today and for which we provide easy migration to the cloud.

  • Stepping stones to the cloud
  • CloudSQL: your SQL database on the cloud
  • Lab: importing data into CloudSQL and running queries on rentals data
  • Dataproc
  • Lab: Machine Learning with SparkML

This module is about the more transformational technologies in Google Cloud platform that may not have immediate parallels to technologies that attendees are using (“what’s next”).

  • Fast random access
  • Datalab
  • Demo: Sample notebook in datalab
  • BigQuery
  • Lab: Build machine learning dataset
  • Machine Learning with TensorFlow
  • Lab: Train and use neural network
  • Fully built models for common needs
  • Lab: Translate
  • Genomics API (optional)

In this module we will introduce you to data processing architectures in Google Cloud Platform.

  • Asynchronous processing with TaskQueues
  • Message-oriented architectures with Pub/Sub
  • Creating pipelines with Dataflow
  • Why GCP?
  • Where to go from here
  • Resources

Ready to get started?

Enroll Now
Related courses